There have been numerous studies on mining temporal specifications from execution traces. These approaches learn finite-state automata (FSA) from execution traces when running tests. To learn accurate specifications of a software system, many tests are required. Existing approaches generalize from a limited number of traces or use simple test generation strategies. Unfortunately, these strategies may not exercise uncommon usage patterns of a software system. To address this problem, we propose a new approach, adversarial specification mining, and develop a prototype, DICE (Diversity through Counter-Examples). DICE has two components: DICE-Tester and DICE-Miner. After mining Linear Temporal Logic specifications from an input test suite, DICE-Tester adversarially guides test generation, searching for counterexamples to these specifications to invalidate spurious properties. These counterexamples represent gaps in the diversity of the input test suite. This process produces execution traces of usage patterns that were unrepresented in the input test suite. Next, we propose a new specification inference algorithm, DICE-Miner, to infer FSAs using the traces, guided by the temporal specifications. We find that the inferred specifications are of higher quality than those produced by existing state-of-the-art specification miners. Finally, we use the FSAs in a fuzzer for servers of stateful protocols, increasing its coverage.


翻译:有关采矿时间规格的多项研究来自执行痕迹。 这些方法在测试时从执行痕迹中学习有限状态自动地图(FSA) 。 要了解软件系统的准确规格,需要进行许多测试。 现有方法从有限的痕迹中泛化现有方法,或使用简单的测试生成战略。 不幸的是,这些战略可能不会使用软件系统的不寻常使用模式。 为了解决这一问题,我们提议了一种新的方法,即对抗性规格采矿,并开发了一种原型,即DICE(通过反抽样的多样化)。 DICE有两个组成部分: DICE-Tester 和 DICE-Miner。 在从输入测试套套件中开采线性线性线性逻辑规格后,需要进行许多测试。 DICE-Tester 对抗性指南测试生成,寻找这些规格的反样例,以否定虚假的特性。 这些反样例代表了输入测试套件中的多样性差距。 为了解决这个问题,我们提出了一个新的规格,即DICE-miner, 使用新的规格, 将FSA 系统系统现有规格的质量比现有规格更高。 我们发现,根据时间规格的规格的规格,我们用的是FSFISA 。

0
下载
关闭预览

相关内容

【ECIR2021】信息检索技术进展: 从词袋到BERT,230页ppt
专知会员服务
55+阅读 · 2021年3月30日
商业数据分析,39页ppt
专知会员服务
163+阅读 · 2020年6月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
158+阅读 · 2019年10月12日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
5+阅读 · 2020年6月16日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员