With the rise of complex cyber devices Cyber Forensics (CF) is facing many new challenges. For example, there are dozens of systems running on smartphones, each with more than millions of downloadable applications. Sifting through this large amount of data and making sense requires new techniques, such as from the field of Artificial Intelligence (AI). To apply these techniques successfully in CF, we need to justify and explain the results to the stakeholders of CF, such as forensic analysts and members of the court, for them to make an informed decision. If we want to apply AI successfully in CF, there is a need to develop trust in AI systems. Some other factors in accepting the use of AI in CF are to make AI authentic, interpretable, understandable, and interactive. This way, AI systems will be more acceptable to the public and ensure alignment with legal standards. An explainable AI (XAI) system can play this role in CF, and we call such a system XAI-CF. XAI-CF is indispensable and is still in its infancy. In this paper, we explore and make a case for the significance and advantages of XAI-CF. We strongly emphasize the need to build a successful and practical XAI-CF system and discuss some of the main requirements and prerequisites of such a system. We present a formal definition of the terms CF and XAI-CF and a comprehensive literature review of previous works that apply and utilize XAI to build and increase trust in CF. We discuss some challenges facing XAI-CF. We also provide some concrete solutions to these challenges. We identify key insights and future research directions for building XAI applications for CF. This paper is an effort to explore and familiarize the readers with the role of XAI applications in CF, and we believe that our work provides a promising basis for future researchers interested in XAI-CF.
翻译:暂无翻译