Automatic algorithm-hardware co-design for DNN has shown great success in improving the performance of DNNs on FPGAs. However, this process remains challenging due to the intractable search space of neural network architectures and hardware accelerator implementation. Differing from existing hardware-aware neural architecture search (NAS) algorithms that rely solely on the expensive learning-based approaches, our work incorporates integer programming into the search algorithm to prune the design space. Given a set of hardware resource constraints, our integer programming formulation directly outputs the optimal accelerator configuration for mapping a DNN subgraph that minimizes latency. We use an accuracy predictor for different DNN subgraphs with different quantization schemes and generate accuracy-latency pareto frontiers. With low computational cost, our algorithm can generate quantized networks that achieve state-of-the-art accuracy and hardware performance on Xilinx Zynq (ZU3EG) FPGA for image classification on ImageNet dataset. The solution searched by our algorithm achieves 72.5% top-1 accuracy on ImageNet at framerate 50, which is 60% faster than MnasNet and 135% faster than FBNet with comparable accuracy.
翻译:DNN 自动算法- 硬件共同设计在改善 DNN 功能性能方面表现出极大的成功。 但是,由于神经网络结构以及硬件加速器的安装难以找到,这一过程仍然具有挑战性。 与现有的完全依赖昂贵的学习方法的硬件智能神经结构搜索算法(NAS)不同,我们的工作将整数编程纳入搜索算法,以缩小设计空间。 鉴于一系列硬件资源限制,我们的整数编程配制直接产出了绘制 DNN 子绘图的最佳加速器配置,以绘制DNN 最小延缓度的子图。我们使用一个精确预测器,用于不同量子化方案的不同 DNNN 子图和硬件加速器的搜索空间,并生成精确度等近边界。如果计算成本低,我们的算法可以生成在 Xilinx Zynq (ZU3EG) 上达到最新精度和硬件性能的网络,从而在图像网络数据集上进行图像分类。我们用算法搜索的解决方案在图像网络上达到72.5%的顶端一精确度,在FNet上比Frampalate的Mnate为快。