Noisy Intermediate-Scale Quantum (NISQ) computers face a critical limitation in qubit numbers, hindering their progression towards large-scale and fault-tolerant quantum computing. A significant challenge impeding scaling is crosstalk, characterized by unwanted interactions among neighboring components on quantum chips, including qubits, resonators, and substrate. We motivate a general approach to systematically resolving multifaceted crosstalks in a limited substrate area. We propose Qplacer, a frequency-aware electrostatic-based placement framework tailored for superconducting quantum computers, to alleviate crosstalk by isolating these components in spatial and frequency domains alongside compact substrate design. Qplacer commences with a frequency assigner that ensures frequency domain isolation for qubits and resonators. It then incorporates a padding strategy and resonator partitioning for layout flexibility. Central to our approach is the conceptualization of quantum components as charged particles, enabling strategic spatial isolation through a 'frequency repulsive force' concept. Our results demonstrate that Qplacer carefully crafts the physical component layout in mitigating various crosstalk impacts while maintaining a compact substrate size. On various device topologies and NISQ benchmarks, Qplacer improves fidelity by an average of 36.7x and reduces spatial violations (susceptible to crosstalk) by an average of 12.76x, compared to classical placement engines. Regarding area optimization, compared to manual designs, Qplacer can reduce the required layout area by 2.14x on average


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员