Recent researches indicate that utilizing the frequency information of input data can enhance the performance of networks. However, the existing popular convolutional structure is not designed specifically for utilizing the frequency information contained in datasets. In this paper, we propose a novel and effective module, named FreConv (frequency branch-and-integration convolution), to replace the vanilla convolution. FreConv adopts a dual-branch architecture to extract and integrate high- and low-frequency information. In the high-frequency branch, a derivative-filter-like architecture is designed to extract the high-frequency information while a light extractor is employed in the low-frequency branch because the low-frequency information is usually redundant. FreConv is able to exploit the frequency information of input data in a more reasonable way to enhance feature representation ability and reduce the memory and computational cost significantly. Without any bells and whistles, experimental results on various tasks demonstrate that FreConv-equipped networks consistently outperform state-of-the-art baselines.


翻译:近期的研究表明,利用输入数据的频率信息可以增强网络性能。然而,现有的流行卷积结构并没有专门为利用数据集中包含的频率信息而设计。本文提出了一种新颖而有效的模块 FreConv(频率分支推理卷积),用于替换传统的卷积。FreConv 采用双分支体系结构来提取和整合高低频信息。在高频分支中,设计了类似于导数滤波器的体系结构来提取高频信息,而在低频分支中则采用轻量级提取器,因为低频信息通常是冗余的。FreConv 能够更合理地利用输入数据的频率信息,提高特征表示能力,显著降低内存和计算成本。在各种任务中,实验结果表明,配备 FreConv 的网络始终优于最先进的基线模型,且无需任何花哨的处理。

0
下载
关闭预览

相关内容

【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
21+阅读 · 2018年5月23日
Arxiv
29+阅读 · 2018年4月6日
VIP会员
相关VIP内容
【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员