Digital twins are emerging in many industries, typically consisting of simulation models and data associated with a specific physical system. One of the main reasons for developing a digital twin, is to enable the simulation of possible consequences of a given action, without the need to interfere with the physical system itself. Physical systems of interest, and the environments they operate in, do not always behave deterministically. Moreover, information about the system and its environment is typically incomplete or imperfect. Probabilistic representations of systems and environments may therefore be called for, especially to support decisions in application areas where actions may have severe consequences. In this paper we introduce the probabilistic digital twin (PDT). We will start by discussing how epistemic uncertainty can be treated using measure theory, by modelling epistemic information via $\sigma$-algebras. Based on this, we give a formal definition of how epistemic uncertainty can be updated in a PDT. We then study the problem of optimal sequential decision making. That is, we consider the case where the outcome of each decision may inform the next. Within the PDT framework, we formulate this optimization problem. We discuss how this problem may be solved (at least in theory) via the maximum principle method or the dynamic programming principle. However, due to the curse of dimensionality, these methods are often not tractable in practice. To mend this, we propose a generic approximate solution using deep reinforcement learning together with neural networks defined on sets. We illustrate the method on a practical problem, considering optimal information gathering for the estimation of a failure probability.
翻译:数字双胞胎正在许多行业中出现,通常由模拟模型和数据组成,与特定物理系统相关。开发数字双胞胎的主要原因之一是模拟某一行动可能产生的后果,而不必干扰物理系统本身。有形的感兴趣系统及其运行环境并非总是有决定性的。此外,关于系统及其环境的信息通常不完全或不完善。因此,可能需要对系统和环境的概率描述,特别是支持在可能具有严重后果的应用领域做出决策。在本文中,我们引入了概率数字双胞胎(PDT),我们首先讨论如何用测量理论来处理表面不确定性,通过美元/gifma$-algebras模拟显性信息。基于这一点,我们正式界定了如何在PDT中更新表面不确定性。然后我们研究最优化的顺序决策人的问题。我们考虑的是每个决定的结果如何为下一个领域提供信息。在PDT框架中,我们最起码地用测量这一精确的理论,我们常常用这种精确的理论来解释这个理论。我们如何用最精确的理论来解释这个理论来解释这个理论。我们如何用最精确的理论来解释这个理论来解释这个理论。我们如何用最精确的理论来解释这个理论来解释这个理论。我们用最精确的方法来解释这个方法来解释这个方法来解释这个理论。