Multimodal summarisation with multimodal output is drawing increasing attention due to the rapid growth of multimedia data. While several methods have been proposed to summarise visual-text contents, their multimodal outputs are not succinct enough at an extreme level to address the information overload issue. To the end of extreme multimodal summarisation, we introduce a new task, eXtreme Multimodal Summarisation with Multimodal Output (XMSMO) for the scenario of TL;DW - Too Long; Didn't Watch, akin to TL;DR. XMSMO aims to summarise a video-document pair into a summary with an extremely short length, which consists of one cover frame as the visual summary and one sentence as the textual summary. We propose a novel unsupervised Hierarchical Optimal Transport Network (HOT-Net) consisting of three components: hierarchical multimodal encoders, hierarchical multimodal fusion decoders, and optimal transport solvers. Our method is trained, without using reference summaries, by optimising the visual and textual coverage from the perspectives of the distance between the semantic distributions under optimal transport plans. To facilitate the study on this task, we collect a large-scale dataset XMSMO-News by harvesting 4,891 video-document pairs. The experimental results show that our method achieves promising performance in terms of ROUGE and IoU metrics.


翻译:由于多媒体数据迅速增长,多式产出的多式合成正在引起越来越多的关注。虽然提出了几种方法来总结视觉文本内容,但其多式联运产出在极端水平上不够简洁,不足以解决信息超载问题。在极端的多式联运汇总的结尾,我们引入了一项新的任务,即以多式输出(XMSMO)对TL(XMMO)的情景进行Xtreme多式合成;DW - 太长;没有观察(类似于TL);DR.XMSMO旨在将一对视频文件的配对归纳成一个非常短的概要,由作为视觉摘要的一个封面框架和一个句子组成,作为文本摘要。在极端的多式联运汇总的结尾,我们提出了一个新的、没有超超超超超的高度优化最佳运输网络(HOT-Net),由三个部分组成:等级的多式联运编码、等级的多式集聚变器和最佳的运输溶剂。我们的方法经过培训,没有参考摘要,而是将视觉和文字覆盖从SENE的距离的角度加以选择,由一个封面框框框框框框框框架组成,作为视觉摘要,作为视觉摘要,作为视觉摘要,作为摘要,作为文本摘要,作为文本摘要,我们根据最佳运输计划进行大规模分配的结果。我们最有希望的磁标定的磁标的磁制的图,我们用。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年11月21日
Arxiv
68+阅读 · 2022年9月7日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员