In this paper, we present two image classification models on the Tiny ImageNet dataset. We built two very different networks from scratch based on the idea of Densely Connected Convolution Networks. The architecture of the networks is designed based on the image resolution of this specific dataset and by calculating the Receptive Field of the convolution layers. We also used some non-conventional techniques related to image augmentation and Cyclical Learning Rate to improve the accuracy of our models. The networks are trained under high constraints and low computation resources. We aimed to achieve top-1 validation accuracy of 60%; the results and error analysis are also presented.


翻译:在本文中,我们在“小图像网络”数据集上展示了两个图像分类模型。我们根据“连通性强的革命网络”的设想,从零开始建立了两个截然不同的网络。网络结构的设计基于这一特定数据集的图像分辨率和通过计算革命层的受体领域。我们还使用了一些与图像增强和周期学习率有关的非常规技术来提高模型的准确性。这些网络在高度制约和低计算资源下接受培训。我们的目标是达到60%的顶层一级验证准确性;结果和误差分析也作了介绍。

0
下载
关闭预览

相关内容

作为CVPR2017年的Best Paper, DenseNet脱离了加深网络层数(ResNet)和加宽网络结构(Inception)来提升网络性能的定式思维,从特征的角度考虑,通过特征重用和旁路(Bypass)设置,既大幅度减少了网络的参数量,又在一定程度上缓解了gradient vanishing问题的产生.结合信息流和特征复用的假设,DenseNet当之无愧成为2017年计算机视觉顶会的年度最佳论文.
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
重磅!MobileNetV3 来了!
计算机视觉life
4+阅读 · 2019年5月11日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
5+阅读 · 2020年3月16日
Arxiv
5+阅读 · 2018年1月18日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关VIP内容
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
重磅!MobileNetV3 来了!
计算机视觉life
4+阅读 · 2019年5月11日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员