Let T(x) in k[x] be a monic non-constant polynomial and write R=k[x] / (T) the quotient ring. Consider two bivariate polynomials a(x, y), b(x, y) in R[y]. In a first part, T = p^e is assumed to be the power of an irreducible polynomial p. A new algorithm that computes a minimal lexicographic Groebner basis of the ideal ( a, b, p^e), is introduced. A second part extends this algorithm when T is general through the "local/global" principle realized by a generalization of "dynamic evaluation", restricted so far to a polynomial T that is squarefree. The algorithm produces splittings according to the case distinction "invertible/nilpotent", extending the usual "invertible/zero" in classic dynamic evaluation. This algorithm belongs to the Euclidean family, the core being a subresultant sequence of a and b modulo T. In particular no factorization or Groebner basis computations are necessary. The theoretical background relies on Lazard's structural theorem for lexicographic Groebner bases in two variables. An implementation is realized in Magma. Benchmarks show clearly the benefit, sometimes important, of this approach compared to the Groebner bases approach.
翻译:在 k[ x] 中, let T( x) 被假定为 Monic 非 concent 的多元多语种的力量。 引入了一种新的算法, 该算法计算了理想( a, b, p ) 的最起码的格罗布纳法基础( a, b, p ) 。 当 T 是通用的“ 动态评估” 所实现的“ 地方/ 全球” 原则时, 第二部分扩展了这一算法。 考虑在R[ 中, 将两个双变量多数值多数值a( x, y, b (x), b(x) y, b(x) y) y(y), b(x) y(x) y(x), b(x) y(x) y, b(x) y) y(y) y(y) y(x) y( y(x) y( y) y( y) ) 。 在典型的动态评价中, 该算法系通常的“ 不可逆数/ zerocloclob( licelb) comb) oralb( comb) comb) comml) commalb( comb) commalb( commal) commal) ) commal) comb( commal) commal) commal) commal) comb( commal) complation complational) commational commation commation comb( comb) comb) comb) comb) combisb) combisb) commal) commb( comb) commal) comb) commal commusmusmal) commal) commations) commations) commession