Telescopers for a function are linear differential (resp. difference) operators annihilated by the definite integral (resp. definite sum) of this function. They play a key role in Wilf-Zeilberger theory and algorithms for computing them have been extensively studied in the past thirty years. In this paper, we introduce the notion of telescopers for differential forms with $D$-finite function coefficients. These telescopers appear in several areas of mathematics, for instance parametrized differential Galois theory and mirror symmetry. We give a sufficient and necessary condition for the existence of telescopers for a differential form and describe a method to compute them if they exist. Algorithms for verifying this condition are also given.


翻译:函数的望远镜是线性差( resp. difference) 操作员, 被该函数的确定整体( resp. de定数) 消灭。 他们在Wilf- Zeilberger理论和计算这些函数的算法中发挥了关键作用。 在过去三十年中,我们广泛研究了这些函数的计算方法。 在本文中, 我们引入了以$D$- finite 函数系数表示不同形式的望远镜员的概念。 这些望远镜出现在数学的若干领域, 例如, 等同的Galois 理论和镜面对称。 我们给望远镜的存在提供了足够和必要的条件, 以便有差异的形式存在, 并描述一种计算方法 。 也给出了用于验证该条件的参数 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
专知会员服务
161+阅读 · 2020年1月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月10日
Arxiv
0+阅读 · 2021年3月9日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员