We investigate mathematical structures that provide a natural semantics for families of (quantified) non-classical logics featuring special unary connectives, called recovery operators, that allow us to 'recover' the properties of classical logic in a controlled fashion. These structures are called topological Boolean algebras. They are Boolean algebras extended with additional unary operations, called operators, such that they satisfy particular conditions of a topological nature. In the present work we focus on the paradigmatic case of negation. We show how these algebras are well-suited to provide a semantics for some families of paraconsistent Logics of Formal Inconsistency and paracomplete Logics of Formal Undeterminedness, which feature recovery operators used to earmark propositions that behave 'classically' in interaction with non-classical negations. In contrast to traditional semantical investigations, carried out in natural language (extended with mathematical shorthand), our formal meta-language is a system of higher-order logic (HOL) for which automated reasoning tools exist. In our approach, topological Boolean algebras become encoded as algebras of sets via their Stone-type representation. We employ our higher-order meta-logic to define and interrelate several transformations on unary set operations (operators), which naturally give rise to a topological cube of opposition. Furthermore, our approach allows for a uniform characterization of propositional, first-order and higher-order quantification (also restricted to constant and varying domains). With this work we want to make a case for the utilization of automated theorem proving technology for doing computer-supported research in non-classical logics. All presented results have been formally verified (and in many cases obtained) using the Isabelle/HOL proof assistant.
翻译:我们调查数学结构,这些结构为(量化的)非古典逻辑的家庭提供了自然的语义,这些逻辑以特殊的单词连接为特点,称为恢复操作员,使我们能够以控制的方式“重新恢复”古典逻辑的特性。这些结构被称为“表层布利安代数”。这些结构是布利安代数,通过额外的非常规操作,称为操作员,扩展了布利安代数,从而满足了特定的地形性质条件。在目前的工作中,我们注重的是否定的范式案例。我们展示了这些代数,这些代数非常适合为一些具有超常态连接特征的系统提供一种语系的语系。这些代数的代数,这些代数的代数的代数是,这些代数的代数是,这些代数是用自然语言进行的(与数学缩略),我们正式的代数的代数的代数,这些代数的代数的代数是高阶逻辑(HOL),这些代数的代数是用来提供自动推理工具的。在我们的方法中,这些代数的顶级代数的代数的代数的代代代数中,我们用代代代代代代代代代代代代代代代数的代代数的代数的代代代数的代数的代代数的代代代数的代数的代数的代数是用来,我们的代数的代数的代数的代数的代数的代数的代数的代数的代数是用于方法是用于的代数,我们的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数,用来,用来是算算算法,用来的代数是用来的代数是,用来,用来的代数的代数的代数的代数的代数的代数,用来的代数,用来的代数,用来是,用来是,用来是,用来的代数的代数的代数的代数,用来的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数的代数