Constructing a universal moral code for artificial intelligence (AI) is difficult or even impossible, given that different human cultures have different definitions of morality and different societal norms. We therefore argue that the value system of an AI should be culturally attuned: just as a child raised in a particular culture learns the specific values and norms of that culture, we propose that an AI agent operating in a particular human community should acquire that community's moral, ethical, and cultural codes. How AI systems might acquire such codes from human observation and interaction has remained an open question. Here, we propose using inverse reinforcement learning (IRL) as a method for AI agents to acquire a culturally-attuned value system implicitly. We test our approach using an experimental paradigm in which AI agents use IRL to learn different reward functions, which govern the agents' moral values, by observing the behavior of different cultural groups in an online virtual world requiring real-time decision making. We show that an AI agent learning from the average behavior of a particular cultural group can acquire altruistic characteristics reflective of that group's behavior, and this learned value system can generalize to new scenarios requiring altruistic judgments. Our results provide, to our knowledge, the first demonstration that AI agents could potentially be endowed with the ability to continually learn their values and norms from observing and interacting with humans, thereby becoming attuned to the culture they are operating in.
翻译:暂无翻译