Constructing a universal moral code for artificial intelligence (AI) is difficult or even impossible, given that different human cultures have different definitions of morality and different societal norms. We therefore argue that the value system of an AI should be culturally attuned: just as a child raised in a particular culture learns the specific values and norms of that culture, we propose that an AI agent operating in a particular human community should acquire that community's moral, ethical, and cultural codes. How AI systems might acquire such codes from human observation and interaction has remained an open question. Here, we propose using inverse reinforcement learning (IRL) as a method for AI agents to acquire a culturally-attuned value system implicitly. We test our approach using an experimental paradigm in which AI agents use IRL to learn different reward functions, which govern the agents' moral values, by observing the behavior of different cultural groups in an online virtual world requiring real-time decision making. We show that an AI agent learning from the average behavior of a particular cultural group can acquire altruistic characteristics reflective of that group's behavior, and this learned value system can generalize to new scenarios requiring altruistic judgments. Our results provide, to our knowledge, the first demonstration that AI agents could potentially be endowed with the ability to continually learn their values and norms from observing and interacting with humans, thereby becoming attuned to the culture they are operating in.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员