We consider learning approximate Nash equilibria for discrete-time mean-field games with nonlinear stochastic state dynamics subject to both average and discounted costs. To this end, we introduce a mean-field equilibrium (MFE) operator, whose fixed point is a mean-field equilibrium (i.e. equilibrium in the infinite population limit). We first prove that this operator is a contraction, and propose a learning algorithm to compute an approximate mean-field equilibrium by approximating the MFE operator with a random one. Moreover, using the contraction property of the MFE operator, we establish the error analysis of the proposed learning algorithm. We then show that the learned mean-field equilibrium constitutes an approximate Nash equilibrium for finite-agent games.
翻译:我们考虑在非线性平均场面游戏中学习非线性平均场面运动的近似纳什平衡,非线性平均场面平均动态取决于平均成本和折扣成本。 为此,我们引入了一个平均场平衡操作员,其固定点是平均场平衡(即无限人口限制中的平衡 ) 。 我们首先证明这个操作员是一种收缩,并提议一种学习算法,通过随机将MFE操作员与近似平均场平衡进行计算。 此外,我们利用MFE操作员的收缩属性,对拟议的学习算法进行错误分析。 然后我们表明,所学的中等场平衡构成了定剂游戏的近似纳什平衡。