For high-resource languages like English, text classification is a well-studied task. The performance of modern NLP models easily achieves an accuracy of more than 90% in many standard datasets for text classification in English (Xie et al., 2019; Yang et al., 2019; Zaheer et al., 2020). However, text classification in low-resource languages is still challenging due to the lack of annotated data. Although methods like weak supervision and crowdsourcing can help ease the annotation bottleneck, the annotations obtained by these methods contain label noise. Models trained with label noise may not generalize well. To this end, a variety of noise-handling techniques have been proposed to alleviate the negative impact caused by the errors in the annotations (for extensive surveys see (Hedderich et al., 2021; Algan & Ulusoy, 2021)). In this work, we experiment with a group of standard noisy-handling methods on text classification tasks with noisy labels. We study both simulated noise and realistic noise induced by weak supervision. Moreover, we find task-adaptive pre-training techniques (Gururangan et al., 2020) are beneficial for learning with noisy labels.
翻译:对于英语等高资源语言来说,文本分类是一项研究周密的任务。现代NLP模型的性能很容易在英文文本分类的许多标准数据集中达到90%以上的精确度(Xie等人,2019年;Yang等人,2019年;Zaheer等人,2020年)。然而,由于缺少附加说明的数据,低资源语言的文本分类仍然具有挑战性。虽然薄弱的监管和众包等方法有助于缓解批注瓶颈,但这些方法获得的说明含有标签噪音。用标签噪音训练的模型可能不会十分笼统。为此,提出了各种噪音处理技术,以减轻说明中错误造成的消极影响(关于广泛调查,见(Hedderich等人,2021年;Algan & Ulusoy,2021年)。在这项工作中,我们试验了一组标准噪音处理方法,即用噪音标签来进行文字分类。我们研究了由薄弱监督引起的模拟噪音和现实噪音。此外,我们发现任务适应前的升级技术(Gurrana等人,2020年)。