The asymptotic dimension of metric spaces is an important notion in geometric group theory introduced by Gromov. The metric spaces considered in this paper are the ones whose underlying spaces are the vertex-sets of graphs and whose metrics are the distance functions in graphs. A standard compactness argument shows that it suffices to consider the asymptotic dimension of classes of finite graphs. In this paper we prove that the asymptotic dimension of any proper minor-closed family, any class of graphs of bounded tree-width, and any class of graphs of bounded layered tree-width are at most 2, 1, and 2, respectively. The first result solves a question of Fujiwara and Papasoglu; the second and third results solve a number of questions of Bonamy, Bousquet, Esperet, Groenland, Pirot and Scott. These bounds for asymptotic dimension are optimal and improve a number of results in the literature. Our proofs can be transformed into linear or quadratic time algorithms for finding coverings witnessing the asymptotic dimension which is equivalent to finding weak diameter colorings for graphs. The key ingredient of our proof is a unified machinery about the asymptotic dimension of classes of graphs that have tree-decompositions of bounded adhesion over hereditary classes with known asymptotic dimension, which might be of independent interest.


翻译:Gromov 引入的几何组理论中, 测量空间的无光度维度是一个重要概念。 本文中考虑的度度度空间是其基本空间为图形的顶层集和图中的距离函数。 标准的紧凑度参数参数论证表明, 足以考虑数量图形类别中的无光度维度。 在本文中, 我们证明, 任何适当的小封闭家庭、 任何种类的条纹树边形图以及任何类型的条纹层树宽度图都是分别在2、 1 和 2 上。 第一个结果解决了富士瓦拉和帕帕索格卢的问题; 第二个和第三个结果解决了博纳米、 布斯凯、 埃斯佩雷特、 格罗恩兰、 皮罗特 和 斯科特等一系列问题。 这些关于无光度维度的界限是最佳的, 改进了文献中的结果。 我们的证据可以转换成线性或四面线度时间算法, 以找到将图层层的细度标为直径的直径, 的直径等的图层层层, 也相当于所认识的图形结构的图层的细层的图层, 。 的图层的底层的图层层的图层的图层层层层层层层层层层的图的图的图的图的图的图的图的图的图的图的底等等等为其为其为其为其图。

0
下载
关闭预览

相关内容

专知会员服务
85+阅读 · 2020年12月5日
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
46+阅读 · 2020年8月19日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
5+阅读 · 2017年11月20日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年1月12日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
0+阅读 · 2021年1月10日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
85+阅读 · 2020年12月5日
【ST2020硬核课】深度神经网络,57页ppt
专知会员服务
46+阅读 · 2020年8月19日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
已删除
将门创投
5+阅读 · 2017年11月20日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员