Recently Brakerski, Christiano, Mahadev, Vazirani and Vidick (FOCS 2018) have shown how to construct a test of quantumness based on the learning with errors (LWE) assumption: a test that can be solved efficiently by a quantum computer but cannot be solved by a classical polynomial-time computer under the LWE assumption. This test has lead to several cryptographic applications. In particular, it has been applied to producing certifiable randomness from a single untrusted quantum device, self-testing a single quantum device and device-independent quantum key distribution. In this paper, we show that this test of quantumness, and essentially all the above applications, can actually be implemented by a very weak class of quantum circuits: constant-depth quantum circuits combined with logarithmic-depth classical computation. This reveals novel complexity-theoretic properties of this fundamental test of quantumness and gives new concrete evidence of the superiority of small-depth quantum circuits over classical computation.


翻译:最近,Brakerski、Christiano、Mahadev、Vazirani和Vidick(FOCS 2018)展示了如何根据有错误的学习(LWE)假设构建量子度测试:这个测试可以通过量子计算机有效解决,但无法在LWE假设下由古典多元时间计算机解决。这个测试导致若干加密应用。特别是,它被用于从一个单一的无信任量子设备中产生可验证的随机性,自我测试一个单量子装置和依靠装置的量子钥匙分布。在本文中,我们表明量子测试,基本上所有上述应用,实际上可以通过非常弱的量子电路进行:常深量电路,结合对数深度的经典计算。这揭示了这一基本量子测试的复杂理论特性,并提供了小深度量子电路优于经典计算的新具体证据。

0
下载
关闭预览

相关内容

IEEE计算机科学基础研讨会(FOCS)是由IEEE计算机学会计算数学基础技术委员会(TCMF)主办的旗舰会议,涵盖了广泛的理论计算机科学。它每年秋季举行,并与每年春季举行的由ACM SIGACT赞助的姊妹会议——计算理论年度研讨会(STOC)配对。官网链接:http://ieee-focs.org/
【微众银行】联邦学习白皮书_v2.0,48页pdf,
专知会员服务
165+阅读 · 2020年4月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员