Artificial intelligence (AI) is increasingly used in digital pathology. Publicly available histopathology datasets remain scarce, and those that do exist predominantly represent Western populations. Consequently, the generalizability of AI models to populations from less digitized regions, such as the Middle East, is largely unknown. This motivates the public release of our dataset to support the development and validation of pathology AI models across globally diverse populations. We present 339 whole-slide images of prostate core needle biopsies from a consecutive series of 185 patients collected in Erbil, Iraq. The slides are associated with Gleason scores and International Society of Urological Pathology grades assigned independently by three pathologists. Scanning was performed using two high-throughput scanners (Leica and Hamamatsu) and one compact scanner (Grundium). All slides were de-identified and are provided in their native formats without further conversion. The dataset enables grading concordance analyses, color normalization, and cross-scanner robustness evaluations. Data will be deposited in the Bioimage Archive (BIA) under accession code: to be announced (TBA), and released under a CC BY 4.0 license.


翻译:人工智能(AI)在数字病理学中的应用日益广泛。公开可用的组织病理学数据集仍然稀缺,且现有数据主要代表西方人群。因此,AI模型对于中东等数字化程度较低地区人群的泛化能力在很大程度上尚不明确。这促使我们公开本数据集,以支持针对全球多样化人群的病理学AI模型的开发与验证。我们提供了来自伊拉克埃尔比勒连续收集的185名患者的339张前列腺穿刺活检全切片图像。这些切片关联了由三位病理学家独立判定的Gleason评分和国际泌尿病理学会分级。扫描使用了两台高通量扫描仪(Leica和Hamamatsu)及一台紧凑型扫描仪(Grundium)完成。所有切片均已去标识化,并以原始格式提供,未进行进一步转换。该数据集支持分级一致性分析、颜色归一化及跨扫描仪鲁棒性评估。数据将存放于生物图像档案库(BIA),登录号为待公布(TBA),并以CC BY 4.0许可协议发布。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2020年8月3日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员