We present an error tolerant path planning algorithm for Micro Aerial Vehicle (MAV) swarms. We assume navigation without GPS-like techniques. The MAVs find their path using sensors and cameras, identifying and following a series of visual landmarks. The visual landmarks lead the MAVs towards their destination. MAVs are assumed to be unaware of the terrain and locations of the landmarks. They hold a priori information about landmarks, whose interpretation is prone to errors. Errors are of two types, recognition or advice. Recognition errors follow from misinterpretation of sensed data or a priori information, or confusion of objects, e.g., due to faulty sensors. Advice errors are consequences of outdated or wrong information about landmarks, e.g., due to weather conditions. Our path planning algorithm is cooperative. MAVs communicate and exchange information wirelessly, to minimize the number of recognition and advice errors. Hence, the quality of the navigation decision process is amplified. Our solution successfully achieves an adaptive error tolerant navigation system. Quality amplification is parameterized with respect to the number of MAVs. We validate our approach with theoretical proofs and numeric simulations.
翻译:我们为微航空飞行器群提供了一种容错的路径规划算法。我们没有使用类似GPS的技术而从事导航。MAV用感应器和摄像头发现自己的路径,识别和跟踪一系列视觉地标。视觉地标引导MAV前往目的地。MAV被认为不了解地标的地形和位置。它们拥有关于地标的先验信息,其解释容易出错。错误分为两类、识别或建议。感应数据或先验信息错误,或物体混乱,如传感器错误等,都会造成识别错误。建议错误是有关地标信息过时或错误的后果,例如由于天气条件的原因。我们的道路规划算法是合作的。MAVS进行无线通信和信息交流,以尽量减少识别和咨询错误的数量。因此,导航决定程序的质量被放大。我们的解决方案成功地实现了适应性误差的导航系统。质量调整是参照MAVS的数量进行比较的。我们用理论证据和数字来验证我们的方法。