Recently, numerous sparse hardware accelerators for Deep Neural Networks (DNNs), Graph Neural Networks (GNNs), and scientific computing applications have been proposed. A common characteristic among all of these accelerators is that they target tensor algebra (typically matrix multiplications); yet dozens of new accelerators are proposed for every new application. The motivation is that the size and sparsity of the workloads heavily influence which architecture is best for memory and computation efficiency. To satisfy the growing demand of efficient computations across a spectrum of workloads on large data centers, we propose deploying a flexible 'heterogeneous' accelerator, which contains many 'sub-accelerators' (smaller specialized accelerators) working together. To this end, we propose: (1) HARD TACO, a quick and productive C++ to RTL design flow to generate many types of sub-accelerators for sparse and dense computations for fair design-space exploration, (2) AESPA, a heterogeneous sparse accelerator design template constructed with the sub-accelerators generated from HARD TACO, and (3) a suite of scheduling strategies to map tensor kernels onto heterogeneous sparse accelerators with high efficiency and utilization. AESPA with optimized scheduling achieves 1.96X higher performance, and 7.9X better energy-delay product (EDP) than a Homogeneous EIE-like accelerator with our diverse workload suite.


翻译:最近,为深神经网络、图形神经网络和科学计算应用程序提出了许多稀少的硬件加速器。所有这些加速器的一个共同特征是,它们针对的是感应代数(典型的矩阵倍增);但为每个新应用程序提出了几十个新的加速器。动机是,工作量的大小和宽度对记忆和计算效率影响最大。为满足大型数据中心一系列工作量中高效计算日益增长的需求,我们提议部署一个灵活的“异质”加速器,其中包括许多“次加速器”(较小型专用加速器)一起工作。为此,我们提议:(1) HARD TACO,一个快速和有生产力的C++到RTL设计流,以产生许多类型的分加速器,用于精密和密集的计算,用于公平的设计-空间探索;(2) AESPA,一个混杂的稀释式加速器设计模板,由高速度器制成,由ASTA-S-C-Slical-Cal-Adrical-Adrial-Adminal-Adminal-Eral-Adal-Ermal-Adal-Axlical-Adal-Adal-Exlical-Adal-Adal-Adal-Axlistr-Adal-Adal-Ax, 和制成一个高的高级和制制成的AA-A-A-A-A-Ax制成的高级和制制制成的A-A-A-AAAAA-A-A-A-A-制式和制式和制制式和制制式和制制制制式和制式和制式和制式和制制式的高级制式和制制制制制制制制制式的高级制制制式和制式制式的制制式和制式和制式和制制式的制式和制式和制制制制制制式的制式和制式制式的制式的制式的制式的制制式和制式和制制制制制制制制制制制制制制制制制式的制制制制制制式和制式和制式和制制制制制制制制制制制制制制制制制制式的

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员