Stream processing is usually done either on a tuple-by-tuple basis or in micro-batches. There are many applications where tuples over a predefined duration/window must be processed within certain deadlines. Processing such queries using stream processing engines can be very inefficient since there is often a significant overhead per tuple or micro-batch. The cost of computation can be significantly reduced by using the wider window available for computation. In this work, we present scheduling schemes where the overhead cost is minimized while meeting the query deadline constraints. For such queries, since the result is needed only at the deadline, tuples can be processed in larger batches, instead of using micro-batches. We present scheduling schemes for single and multi query scenarios. The proposed scheduling algorithms have been implemented as a Custom Query Scheduler, on top of Apache Spark. Our performance study with TPC-H data, under single and multi query modes, shows orders of magnitude improvement as compared to naively using Spark streaming.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Uncertainty of Joint Neural Contextual Bandit
Arxiv
0+阅读 · 2024年6月4日
Arxiv
0+阅读 · 2024年6月4日
Arxiv
6+阅读 · 2024年6月4日
Arxiv
0+阅读 · 2024年5月30日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Uncertainty of Joint Neural Contextual Bandit
Arxiv
0+阅读 · 2024年6月4日
Arxiv
0+阅读 · 2024年6月4日
Arxiv
6+阅读 · 2024年6月4日
Arxiv
0+阅读 · 2024年5月30日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员