Having engaging and informative conversations with users is the utmost goal for open-domain conversational systems. Recent advances in transformer-based language models and their applications to dialogue systems have succeeded to generate fluent and human-like responses. However, they still lack control over the generation process towards producing contentful responses and achieving engaging conversations. To achieve this goal, we present \textbf{DiSCoL} (\textbf{Di}alogue \textbf{S}ystems through \textbf{Co}versational \textbf{L}ine guided response generation). DiSCoL is an open-domain dialogue system that leverages conversational lines (briefly \textbf{convlines}) as controllable and informative content-planning elements to guide the generation model produce engaging and informative responses. Two primary modules in DiSCoL's pipeline are conditional generators trained for 1) predicting relevant and informative convlines for dialogue contexts and 2) generating high-quality responses conditioned on the predicted convlines. Users can also change the returned convlines to \textit{control} the direction of the conversations towards topics that are more interesting for them. Through automatic and human evaluations, we demonstrate the efficiency of the convlines in producing engaging conversations.


翻译:与用户进行互动和内容丰富的对话是开放式对话系统的最大目标。 以变压器为基础的语言模型及其应用于对话系统的最近进展成功地产生了流畅和人性化的反应。 但是, 它们仍然缺乏对生成过程的控制, 以生成内容丰富的反应和进行互动的对话。 为了实现这一目标, 我们提出\ textbf{ Discool} (\ textbf{Di} tulog \ textbf{Co}S}ystems 通过\ textbf{Co}Coversational\ textbf{L}ine Guide Responserations)。 DisCoL 是一个开放对话系统, 将对话线(brief\ textbf{convline})作为可控和内容规划元素, 用于指导生成模型的吸引和提供信息的反应。 DiscoolL 管道的两个主要模块是有条件的, 用于预测对话环境的关联性和信息性连接线和2 生成高质量的响应条件。 用户也可以将对话线的回的连接线转换为我们的对话方向。

0
下载
关闭预览

相关内容

【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
COLING 2018-最新论文最全分类-整理分享
深度学习与NLP
6+阅读 · 2018年7月6日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
多轮对话之对话管理:Dialog Management
PaperWeekly
18+阅读 · 2018年1月15日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Towards Topic-Guided Conversational Recommender System
Arxiv
4+阅读 · 2018年5月10日
Arxiv
5+阅读 · 2017年11月30日
VIP会员
相关VIP内容
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
Top
微信扫码咨询专知VIP会员