Multivariate time series anomaly detection is a very common problem in the field of failure prevention. Fast prevention means lower repair costs and losses. The amount of sensors in novel industry systems makes the anomaly detection process quite difficult for humans. Algorithms which automates the process of detecting anomalies are crucial in modern failure-prevention systems. Therefore, many machine and deep learning models have been designed to address this problem. Mostly, they are autoencoder-based architectures with some generative adversarial elements. In this work, a framework is shown which incorporates neuroevolution methods to boost the anomaly-detection scores of new and already known models. The presented approach adapts evolution strategies for evolving ensemble model, in which every single model works on a subgroup of data sensors. The next goal of neuroevolution is to optimise architecture and hyperparameters like window size, the number of layers, layer depths, etc. The proposed framework shows that it is possible to boost most of the anomaly detection deep learning models in a reasonable time and a fully automated mode. The tests were run on SWAT and WADI datasets. To our knowledge, this is the first approach in which an ensemble deep learning anomaly detection model is built in a fully automatic way using a neuroevolution strategy.
翻译:快速预防意味着降低修复成本和损失。 新型工业系统中传感器的数量使得异常现象检测过程对人类来说相当困难。 将异常现象检测过程自动化的分类在现代故障预防系统中至关重要。 因此,设计了许多机器和深层学习模型来解决这个问题。 多数情况下, 它们是以自动编码器为基础的结构, 包含一些基因对抗元素。 在这项工作中, 展示了一个框架, 其中包括神经进化方法, 以提升新模式和已知新模式的异常检测分数。 所提出的方法使异常现象检测过程对人类来说非常困难。 使异常现象检测过程自动化的分类法使异常现象检测过程在现代故障预防系统中十分关键。 神经进化的下一个目标是优化结构以及像窗口大小、 层、 层深层等等这样的超度参数。 拟议的框架表明, 在合理的时间和完全自动模式中, 大部分异常检测深度学习模型和WAT和WADI数据集的测试方法都用来调整进化成串联模式。 在SWAT和WADI数据集中, 每一个模型中, 都用一种完全的自动的方法来学习进式的神经变异变式方法。