We present Pandar128, the largest public dataset for lane line detection using a 128-beam LiDAR. It contains over 52,000 camera frames and 34,000 LiDAR scans, captured in diverse real-world conditions in Germany. The dataset includes full sensor calibration (intrinsics, extrinsics) and synchronized odometry, supporting tasks such as projection, fusion, and temporal modeling. To complement the dataset, we also introduce SimpleLidarLane, a light-weight baseline method for lane line reconstruction that combines BEV segmentation, clustering, and polyline fitting. Despite its simplicity, our method achieves strong performance under challenging various conditions (e.g., rain, sparse returns), showing that modular pipelines paired with high-quality data and principled evaluation can compete with more complex approaches. Furthermore, to address the lack of standardized evaluation, we propose a novel polyline-based metric - Interpolation-Aware Matching F1 (IAM-F1) - that employs interpolation-aware lateral matching in BEV space. All data and code are publicly released to support reproducibility in LiDAR-based lane detection.
翻译:我们提出了Pandar128,这是目前最大的基于128线激光雷达(LiDAR)的车道线检测公开数据集。该数据集包含超过52,000帧相机图像和34,000次激光雷达扫描,采集于德国多样化的真实道路场景。数据集提供了完整的传感器标定(内参、外参)和同步的里程计信息,支持投影、融合和时序建模等任务。为配合数据集,我们还提出了SimpleLidarLane——一种轻量级的车道线重建基准方法,该方法结合了鸟瞰图(BEV)分割、聚类和折线拟合。尽管方法简洁,我们的方法在多种挑战性条件下(如雨天、点云稀疏)仍表现出色,表明模块化流程结合高质量数据和严谨评估可与更复杂的方法竞争。此外,针对缺乏标准化评估的问题,我们提出了一种基于折线的新评价指标——插值感知匹配F1(IAM-F1),该指标在BEV空间中采用插值感知的横向匹配。所有数据与代码均已公开,以支持基于激光雷达的车道检测研究的可复现性。