Neural forecasting has shown significant improvements in the accuracy of large-scale systems, yet predicting extremely long horizons remains a challenging task. Two common problems are the volatility of the predictions and their computational complexity; we addressed them by incorporating smoothness regularization and mixed data sampling techniques to a well-performing multi-layer perceptron based architecture (NBEATS). We validate our proposed method, DMIDAS, on high-frequency healthcare and electricity price data with long forecasting horizons (~1000 timestamps) where we improve the prediction accuracy by 5% over state-of-the-art models, reducing the number of parameters of NBEATS by nearly 70%.


翻译:神经预报显示,大型系统的准确性有了显著改善,然而预测极长的地平线仍是一项艰巨的任务。 有两个共同的问题是预测及其计算复杂性的波动性;我们通过将顺畅的正规化和混合数据取样技术纳入运行良好的多层透视结构(NBEATS ) 来解决这些问题。 我们验证了我们关于高频保健和电价数据、长预测地平线(~1000个时标)的拟议方法(DIDAS ), 也就是我们将预测准确性比最新模型提高5%,将NBEATS参数减少近70%。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
已删除
将门创投
7+阅读 · 2018年12月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Arxiv
0+阅读 · 2021年8月5日
VIP会员
相关VIP内容
【MIT深度学习课程】深度序列建模,Deep Sequence Modeling
专知会员服务
77+阅读 · 2020年2月3日
相关资讯
已删除
将门创投
7+阅读 · 2018年12月12日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【推荐】用TensorFlow实现LSTM社交对话股市情感分析
机器学习研究会
11+阅读 · 2018年1月14日
算法|随机森林(Random Forest)
全球人工智能
3+阅读 · 2018年1月8日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
Top
微信扫码咨询专知VIP会员