One of the central quantities of probabilistic seismic risk assessment studies is the fragility curve, which represents the probability of failure of a mechanical structure conditional to a scalar measure derived from the seismic ground motion. Estimating such curves is a difficult task because for most structures of interest, few data are available. For this reason, a wide range of the methods of the literature rely on a parametric log-normal model. Bayesian approaches allow for efficient learning of the model parameters. However, the choice of the prior distribution has a non-negligible influence on the posterior distribution, and therefore on any resulting estimate. We propose a thorough study of this parametric Bayesian estimation problem when the data are binary (i.e. data indicate the state of the structure, failure or non-failure). Using the reference prior theory as a support, we suggest an objective approach for the prior choice. This approach leads to the Jeffreys' prior which is explicitly derived for this problem for the first time. The posterior distribution is proven to be proper (i.e. it integrates to unity) with Jeffreys' prior and improper with some classical priors from the literature. The posterior distribution with Jeffreys' prior is also shown to vanish at the boundaries of the parameter domain, so sampling of the posterior distribution of the parameters does not produce anomalously small or large values, which in turn does not produce degenerate fragility curves such as unit step functions. The numerical results on three different case studies illustrate these theoretical predictions.
翻译:暂无翻译