Recent advances in NLU and NLP have resulted in renewed interest in natural language interfaces to data, which provide an easy mechanism for non-technical users to access and query the data. While early systems evolved from keyword search and focused on simple factual queries, the complexity of both the input sentences as well as the generated SQL queries has evolved over time. More recently, there has also been a lot of focus on using conversational interfaces for data analytics, empowering a line of non-technical users with quick insights into the data. There are three main challenges in natural language querying (NLQ): (1) identifying the entities involved in the user utterance, (2) connecting the different entities in a meaningful way over the underlying data source to interpret user intents, and (3) generating a structured query in the form of SQL or SPARQL. There are two main approaches for interpreting a user's NLQ. Rule-based systems make use of semantic indices, ontologies, and KGs to identify the entities in the query, understand the intended relationships between those entities, and utilize grammars to generate the target queries. With the advances in deep learning (DL)-based language models, there have been many text-to-SQL approaches that try to interpret the query holistically using DL models. Hybrid approaches that utilize both rule-based techniques as well as DL models are also emerging by combining the strengths of both approaches. Conversational interfaces are the next natural step to one-shot NLQ by exploiting query context between multiple turns of conversation for disambiguation. In this article, we review the background technologies that are used in natural language interfaces, and survey the different approaches to NLQ. We also describe conversational interfaces for data analytics and discuss several benchmarks used for NLQ research and evaluation.


翻译:NLU 和 NLP 的最新进展使人们对自然语言数据界面重新产生兴趣,这为非技术用户访问和查询数据提供了一个简易机制。早期系统从关键字搜索演变而来,侧重于简单的事实查询,但输入句和生成的 SQL 查询的复杂性随着时间而变化。最近,还大量关注数据分析使用对口界面,赋予非技术用户对数据的快速洞察力。自然语言查询(NLQ)有三大挑战:(1) 确定参与用户表达的实体,(2) 以有意义的方式将不同实体连接到基本数据源上,以解释用户意图,而输入输入的 SQL 和生成的 SQL 查询。在解读用户的 NL Q 时,使用基于规则的系统使用语义指数,使用基于规则的Dlog和KGs 来识别查询中的实体,利用这些实体之间的预定关系,利用语义背景将不同的实体连接起来,使用一个语系的语系界面来生成目标查询。在深入的L 数据调查中,我们使用的自然判读了两种语言的进 。我们用来使用两种语言的语系 。在深层次调查中使用了一种语言的语系 。我们用于深层次调查中所使用的语言的语系 。在使用两种语言的读进进进 。我们所使用的语言的语系 Q 。我们使用两种语言 。在使用两种语言的读进进 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月21日
Arxiv
21+阅读 · 2022年11月8日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员