Policy optimization is a fundamental principle for designing reinforcement learning algorithms, and one example is the proximal policy optimization algorithm with a clipped surrogate objective (PPO-clip), which has been popularly used in deep reinforcement learning due to its simplicity and effectiveness. Despite its superior empirical performance, PPO-clip has not been justified via theoretical proof up to date. This paper proposes to rethink policy optimization and reinterpret the theory of PPO-clip based on hinge policy optimization (HPO), called to improve policy by hinge loss in this paper. Specifically, we first identify sufficient conditions of state-wise policy improvement and then rethink policy update as solving a large-margin classification problem with hinge loss. By leveraging various types of classifiers, the proposed design opens up a whole new family of policy-based algorithms, including the PPO-clip as a special case. Based on this construct, we prove that these algorithms asymptotically attain a globally optimal policy. To our knowledge, this is the first ever that can prove global convergence to an optimal policy for a variant of PPO-clip. We corroborate the performance of a variety of HPO algorithms through experiments and an ablation study.


翻译:政策优化是设计强化学习算法的一项基本原则,其中一个例子就是具有剪接代孕目标(PPO-clip)的近似政策优化算法(POPO-clip),由于它的简单性和有效性,在深入强化学习中广泛使用。尽管PPO-clip表现优异,但通过最新的理论证据,PPO-clip没有正当理由。本文件建议重新思考政策优化,重新解释基于关键政策优化(HPO-clip)的PPPO-clip理论(HPO-clip)的理论,该理论被呼吁通过本文中的损失来改善政策。具体地说,我们首先确定国家政策改进的充分条件,然后重新思考政策更新政策更新,作为解决以临界损失为基础的大边际分类问题。通过利用各种分类师,拟议的设计开启了基于政策的各种新的算法,包括PPPO-clip作为特例。基于这一构思,我们证明这些算算算算算算算算出全球最佳政策。据我们所知,这是第一次证明全球对PPO-clip研究的最佳政策具有最佳趋一致性。我们通过一种实验和一种实验证实了各种HPOallallals的绩效。

0
下载
关闭预览

相关内容

《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年12月23日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员