Controlling the style of natural language by disentangling the latent space is an important step towards interpretable machine learning. After the latent space is disentangled, the style of a sentence can be transformed by tuning the style representation without affecting other features of the sentence. Previous works usually use adversarial training to guarantee that disentangled vectors do not affect each other. However, adversarial methods are difficult to train. Especially when there are multiple features (e.g., sentiment, or tense, which we call style types in this paper), each feature requires a separate discriminator for extracting a disentangled style vector corresponding to that feature. In this paper, we propose a unified distribution-controlling method, which provides each specific style value (the value of style types, e.g., positive sentiment, or past tense) with a unique representation. This method contributes a solid theoretical basis to avoid adversarial training in multi-type disentanglement. We also propose multiple loss functions to achieve a style-content disentanglement as well as a disentanglement among multiple style types. In addition, we observe that if two different style types always have some specific style values that occur together in the dataset, they will affect each other when transferring the style values. We call this phenomenon training bias, and we propose a loss function to alleviate such training bias while disentangling multiple types. We conduct experiments on two datasets (Yelp service reviews and Amazon product reviews) to evaluate the style-disentangling effect and the unsupervised style transfer performance on two style types: sentiment and tense. The experimental results show the effectiveness of our model.
翻译:解开隐蔽空间来控制自然语言的风格是向可解释的机器学习迈出的重要一步。 在隐藏的空间被分解后, 句子的样式可以通过调整样式表达方式而改变而不影响句子的其他特性。 以前的工作通常使用对抗性培训来保证分解的矢量不会相互影响。 但是, 对抗性方法很难训练。 特别是当存在多种特性时( 例如, 情绪, 或时势, 我们在此纸张中称之为样式类型的类型类型), 每个特性都需要一个单独的区分符来提取与该特性相对的分解样式向导。 在本文件中, 我们提出一个统一的分发控制方法, 提供每种特定样式表达方式的价值( 样式类型的价值, 如正感, 或过去时态) 。 这个方法提供了坚实的理论基础, 以避免多类型分解的对抗性培训。 我们还提出多个损失功能, 以便实现风格分解, 以及多个样式类型之间的不相交错。 此外, 我们观察到, 当两种不同的样式类型中, 我们总是显示某些特定类型的数据格式的排序, 显示某种不同的数据格式的递减模式的动作, 。