Controlling the style of natural language by disentangling the latent space is an important step towards interpretable machine learning. After the latent space is disentangled, the style of a sentence can be transformed by tuning the style representation without affecting other features of the sentence. Previous works usually use adversarial training to guarantee that disentangled vectors do not affect each other. However, adversarial methods are difficult to train. Especially when there are multiple features (e.g., sentiment, or tense, which we call style types in this paper), each feature requires a separate discriminator for extracting a disentangled style vector corresponding to that feature. In this paper, we propose a unified distribution-controlling method, which provides each specific style value (the value of style types, e.g., positive sentiment, or past tense) with a unique representation. This method contributes a solid theoretical basis to avoid adversarial training in multi-type disentanglement. We also propose multiple loss functions to achieve a style-content disentanglement as well as a disentanglement among multiple style types. In addition, we observe that if two different style types always have some specific style values that occur together in the dataset, they will affect each other when transferring the style values. We call this phenomenon training bias, and we propose a loss function to alleviate such training bias while disentangling multiple types. We conduct experiments on two datasets (Yelp service reviews and Amazon product reviews) to evaluate the style-disentangling effect and the unsupervised style transfer performance on two style types: sentiment and tense. The experimental results show the effectiveness of our model.


翻译:解开隐蔽空间来控制自然语言的风格是向可解释的机器学习迈出的重要一步。 在隐藏的空间被分解后, 句子的样式可以通过调整样式表达方式而改变而不影响句子的其他特性。 以前的工作通常使用对抗性培训来保证分解的矢量不会相互影响。 但是, 对抗性方法很难训练。 特别是当存在多种特性时( 例如, 情绪, 或时势, 我们在此纸张中称之为样式类型的类型类型), 每个特性都需要一个单独的区分符来提取与该特性相对的分解样式向导。 在本文件中, 我们提出一个统一的分发控制方法, 提供每种特定样式表达方式的价值( 样式类型的价值, 如正感, 或过去时态) 。 这个方法提供了坚实的理论基础, 以避免多类型分解的对抗性培训。 我们还提出多个损失功能, 以便实现风格分解, 以及多个样式类型之间的不相交错。 此外, 我们观察到, 当两种不同的样式类型中, 我们总是显示某些特定类型的数据格式的排序, 显示某种不同的数据格式的递减模式的动作, 。

0
下载
关闭预览

相关内容

损失函数,在AI中亦称呼距离函数,度量函数。此处的距离代表的是抽象性的,代表真实数据与预测数据之间的误差。损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。
专知会员服务
33+阅读 · 2020年12月28日
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年10月22日
Interpretable Adversarial Training for Text
Arxiv
5+阅读 · 2019年5月30日
Arxiv
4+阅读 · 2018年4月17日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员