This paper proposes a method for computing the visible occluding contours of subdivision surfaces. The paper first introduces new theory for contour visibility of smooth surfaces. Necessary and sufficient conditions are introduced for when a sampled occluding contour is valid, that is, when it may be assigned consistent visibility. Previous methods do not guarantee these conditions, which helps explain why smooth contour visibility has been such a challenging problem in the past. The paper then proposes an algorithm that, given a subdivision surface, finds sampled contours satisfying these conditions, and then generates a new triangle mesh matching the given occluding contours. The contours of the output triangle mesh may then be rendered with standard non-photorealistic rendering algorithms, using the mesh for visibility computation. The method can be applied to any triangle mesh, by treating it as the base mesh of a subdivision surface.
翻译:本文建议了一种方法, 用于计算光滑表面的可见暗色轮廓。 该文件首先介绍了光滑表面的轮廓可见度的新理论。 当取样的悬浮轮廓有效时, 即当它可能被指派为一致可见度时, 引入了必要和充分的条件 。 先前的方法无法保证这些条件, 这有助于解释为什么平滑的轮廓可见性在过去曾是一个如此具有挑战性的问题 。 本文随后提出了一种算法, 从一个子侧面看, 发现抽样的轮廓满足了这些条件, 然后生成一个新的三角网格与给定的悬浮轮廓匹配 。 然后, 输出三角形网格的轮廓可以用标准的非光学化演算算算算法来设定。 这种方法可以作为子外观表面的基础网格, 用于任何三角网格 。