Summarizing sales calls is a routine task performed manually by salespeople. We present a production system which combines generative models fine-tuned for customer-agent setting, with a human-in-the-loop user experience for an interactive summary curation process. We address challenging aspects of dialogue summarization task in a real-world setting including long input dialogues, content validation, lack of labeled data and quality evaluation. We show how GPT-3 can be leveraged as an offline data labeler to handle training data scarcity and accommodate privacy constraints in an industrial setting. Experiments show significant improvements by our models in tackling the summarization and content validation tasks on public datasets.
翻译:总结销售通话是销售人员手工完成的一项日常任务。我们提出了一个生产系统,将针对客户-代理设置的精细调整的基因模型与交互式简要整理过程的 " 流动中人 " 用户经验结合起来。我们在现实环境中处理对话总结任务的挑战性方面,包括长期投入对话、内容验证、缺乏标签数据和质量评估。我们展示了如何利用GPT-3作为离线数据标签,处理培训数据稀缺问题,并适应工业环境中的隐私限制。实验显示,在解决公共数据集的汇总和内容验证任务方面,我们的模型有了重大改进。