Maximum likelihood estimation is widely used in training Energy-based models (EBMs). Training requires samples from an unnormalized distribution, which is usually intractable, and in practice, these are obtained by MCMC algorithms such as Langevin dynamics. However, since MCMC in high-dimensional space converges extremely slowly, the current understanding of maximum likelihood training, which assumes approximate samples from the model can be drawn, is problematic. In this paper, we try to understand this training procedure by replacing Langevin dynamics with deterministic solutions of the associated gradient descent ODE. Doing so allows us to study the density induced by the dynamics (if the dynamics are invertible), and connect with GANs by treating the dynamics as generator models, the initial values as latent variables and the loss as optimizing a critic defined by the very same energy that determines the generator through its gradient. Hence the term - self-adversarial loss. We show that reintroducing the noise in the dynamics does not lead to a qualitative change in the behavior, and merely reduces the quality of the generator. We thus show that EBM training is effectively a self-adversarial procedure rather than maximum likelihood estimation.


翻译:在培训基于能源的模型(EBMS)中广泛使用最大可能性估算。培训需要来自非正常分布的样本,这种分布通常难以操作,而且实际上,这些样本是通过诸如Langevin动态等MCMC算法获得的。然而,由于高维空间的MCMC算法非常缓慢地汇合,目前对最大可能性培训的理解有问题,这种培训假定可以从模型中抽取大约的样本。在本文件中,我们试图通过用相关梯度下降值ODE的确定性解决方案取代Langevin动态来理解这一培训程序。这样做使我们能够研究动态(如果动态是不可逆的)引起的密度,并通过将动态作为发电机模型、初始值作为潜在变量和损失作为优化由决定发电机的同一能量通过其梯度所定义的批评器而与GANs联系起来。因此,术语----自我对抗性损失。我们表明,在动态中重新引入噪音不会导致行为发生质的变化,而只是降低发电机的质量。我们因此表明,EBM培训是一种有效的自我对抗性程序,而不是最大的可能性估计。

0
下载
关闭预览

相关内容

专知会员服务
49+阅读 · 2021年4月24日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
64+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
8+阅读 · 2017年7月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
0+阅读 · 2021年6月10日
Arxiv
11+阅读 · 2018年3月23日
Arxiv
4+阅读 · 2018年3月23日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
已删除
将门创投
8+阅读 · 2017年7月21日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员