The COVID-19 pandemic caused by the SARS-CoV-2 virus has spread rapidly worldwide, leading to a global outbreak. Most governments, enterprises, and scientific research institutions are participating in the COVID-19 struggle to curb the spread of the pandemic. As a powerful tool against COVID-19, artificial intelligence (AI) technologies are widely used in combating this pandemic. In this survey, we investigate the main scope and contributions of AI in combating COVID-19 from the aspects of disease detection and diagnosis, virology and pathogenesis, drug and vaccine development, and epidemic and transmission prediction. In addition, we summarize the available data and resources that can be used for AI-based COVID-19 research. Finally, the main challenges and potential directions of AI in fighting against COVID-19 are discussed. Currently, AI mainly focuses on medical image inspection, genomics, drug development, and transmission prediction, and thus AI still has great potential in this field. This survey presents medical and AI researchers with a comprehensive view of the existing and potential applications of AI technology in combating COVID-19 with the goal of inspiring researchers to continue to maximize the advantages of AI and big data to fight COVID-19.


翻译:由SARS-CoV-2病毒引起的COVID-19大流行在全世界迅速蔓延,导致全球爆发,大多数政府、企业和科研机构正在参与COVID-19遏制该流行病蔓延的斗争,作为对抗COVID-19的有力工具,人工智能(AI)技术被广泛用于防治这一流行病,在这项调查中,我们调查AI在防治COVID-19方面的主要范围和贡献,包括疾病检测和诊断、病毒学和病理学、药物和疫苗研制、以及流行病和传染预测等方面。此外,我们总结了可用于以AI为基础的COVID-19研究的现有数据和资源。最后,讨论了AI在打击COVID-19的斗争中的主要挑战和潜在方向。目前,AI主要侧重于医学形象检查、基因组学、药物研制和传输预测,因此AI在这一领域仍有巨大潜力。这一调查使医学和AI研究人员全面了解AI技术在打击COVID-19方面的现有和潜在应用,目的是激励研究人员继续最大限度地发挥AI和大数据在打击COVID方面的优势。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
38+阅读 · 2020年3月10日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
AutoML: A Survey of the State-of-the-Art
Arxiv
70+阅读 · 2019年8月14日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
8+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员