Industrial process monitoring increasingly relies on sensor-generated time-series data, yet the lack of labels, high variability, and operational noise make it difficult to extract meaningful patterns using conventional methods. Existing clustering techniques either rely on fixed distance metrics or deep models designed for static data, limiting their ability to handle dynamic, unstructured industrial sequences. Addressing this gap, this paper proposes a novel framework for unsupervised discovery of operational modes in univariate time-series data using image-based convolutional clustering with composite internal evaluation. The proposed framework improves upon existing approaches in three ways: (1) raw time-series sequences are transformed into grayscale matrix representations via overlapping sliding windows, allowing effective feature extraction using a deep convolutional autoencoder; (2) the framework integrates both soft and hard clustering outputs and refines the selection through a two-stage strategy; and (3) clustering performance is objectively evaluated by a newly developed composite score, S_eva, which combines normalized Silhouette, Calinski-Harabasz, and Davies-Bouldin indices. Applied to over 3900 furnace melting operations from a Nordic foundry, the method identifies seven explainable operational patterns, revealing significant differences in energy consumption, thermal dynamics, and production duration. Compared to classical and deep clustering baselines, the proposed approach achieves superior overall performance, greater robustness, and domain-aligned explainability. The framework addresses key challenges in unsupervised time-series analysis, such as sequence irregularity, overlapping modes, and metric inconsistency, and provides a generalizable solution for data-driven diagnostics and energy optimization in industrial systems.
翻译:工业过程监测日益依赖传感器生成的时间序列数据,然而标签缺失、高变异性及操作噪声使得传统方法难以提取有意义的模式。现有聚类技术要么依赖固定距离度量,要么采用针对静态数据设计的深度模型,限制了其处理动态、非结构化工业序列的能力。为弥补这一不足,本文提出一种新颖框架,通过基于图像的卷积聚类与复合内部评估,实现单变量时间序列数据中操作模式的无监督发现。该框架在三个方面改进了现有方法:(1)通过重叠滑动窗口将原始时间序列转换为灰度矩阵表示,利用深度卷积自编码器实现有效特征提取;(2)框架整合软聚类与硬聚类输出,并通过两阶段策略优化选择;(3)聚类性能通过新开发的复合评分S_eva进行客观评估,该评分结合了归一化轮廓系数、Calinski-Harabasz指数和Davies-Bouldin指数。将该方法应用于北欧某铸造厂超过3900次熔炉操作数据,识别出七种可解释的操作模式,揭示了能耗、热动力学和生产持续时间的显著差异。与经典及深度聚类基线方法相比,所提方法实现了更优的整体性能、更强的鲁棒性以及符合领域知识的可解释性。该框架解决了无监督时间序列分析中的关键挑战,如序列不规则性、模式重叠和度量不一致性,为工业系统的数据驱动诊断与能源优化提供了可推广的解决方案。