For several classical nonnegative integer functions, we investigate if they are members of the counting complexity class #P or not. We prove #P membership in surprising cases, and in other cases we prove non-membership, relying on standard complexity assumptions or on oracle separations. We initiate the study of the polynomial closure properties of #P on affine varieties, i.e., if all problem instances satisfy algebraic constraints. This is directly linked to classical combinatorial proofs of algebraic identities and inequalities. We investigate #TFNP and obtain oracle separations that prove the strict inclusion of #P in all standard syntactic subclasses of #TFNP-1.
翻译:对于一些经典的非负整数功能, 我们调查他们是否属于计算复杂等级 #P 的成员。 我们在令人惊讶的案例中证明是 #P 成员, 在其他情况下, 我们证明他们不是会员, 依靠标准复杂假设或甲骨文分离。 我们开始研究#P 的异系异系异系多族封闭属性, 也就是说, 如果所有问题都存在代数限制。 这直接与经典的代数身份和不平等的分类证明直接相关。 我们调查 #TFNP 并获得甲骨骼分离, 以证明将#P 严格纳入所有标准合成亚类的# TFNP 。