Clinical trials are essential for drug development but are extremely expensive and time-consuming to conduct. It is beneficial to study similar historical trials when designing a clinical trial. However, lengthy trial documents and lack of labeled data make trial similarity search difficult. We propose a zero-shot clinical trial retrieval method, Trial2Vec, which learns through self-supervision without annotating similar clinical trials. Specifically, the meta-structure of trial documents (e.g., title, eligibility criteria, target disease) along with clinical knowledge (e.g., UMLS knowledge base https://www.nlm.nih.gov/research/umls/index.html) are leveraged to automatically generate contrastive samples. Besides, Trial2Vec encodes trial documents considering meta-structure thus producing compact embeddings aggregating multi-aspect information from the whole document. We show that our method yields medically interpretable embeddings by visualization and it gets a 15% average improvement over the best baselines on precision/recall for trial retrieval, which is evaluated on our labeled 1600 trial pairs. In addition, we prove the pre-trained embeddings benefit the downstream trial outcome prediction task over 240k trials.
翻译:临床试验对药物发展至关重要,但极其昂贵和耗时,在设计临床试验时研究类似的历史试验是有益的。然而,冗长的试验文件和缺乏贴标签的数据使得试验难以进行类似的研究。我们建议采用零光临床试验检索方法,即Treato2Vec,该方法通过自我监督的观察学习,而不作类似的临床试验。具体地说,试验文件的元结构(例如标题、资格标准、目标疾病)与临床知识(例如UMLS知识库https://www.nlm.nih.gov/research/umls/index.html)一起,都被用来自动生成对比样本。此外,我们用Treato2Vec编码试验文件,考虑元结构,从而产生集集集整个文件的多层信息的紧凑。我们证明,我们的方法通过直观化产生医学上可解释的嵌入,比我们标记的1600个试验配对试验的精准/召回试验的最佳基线平均改进15%。此外,我们证明前的试判结果预测是下游试验。