Fully Homomorphic Encryption (FHE) allows for secure computation on encrypted data. Unfortunately, huge memory size, computational cost and bandwidth requirements limit its practicality. We present BASALISC, an architecture family of hardware accelerators that aims to substantially accelerate FHE computations in the cloud. BASALISC is the first to implement the BGV scheme with fully-packed bootstrapping -- the noise removal capability necessary for arbitrary-depth computation. It supports a customized version of bootstrapping that can be instantiated with hardware multipliers optimized for area and power. BASALISC is a three-abstraction-layer RISC architecture, designed for a 1 GHz ASIC implementation and underway toward 150mm2 die tape-out in a 12nm GF process. BASALISC's four-layer memory hierarchy includes a two-dimensional conflict-free inner memory layer that enables 32 Tb/s radix-256 NTT computations without pipeline stalls. Its conflict-resolution permutation hardware is generalized and re-used to compute BGV automorphisms without throughput penalty. BASALISC also has a custom multiply-accumulate unit to accelerate BGV key switching. The BASALISC toolchain comprises a custom compiler and a joint performance and correctness simulator. To evaluate BASALISC, we study its physical realizability, emulate and formally verify its core functional units, and we study its performance on a set of benchmarks. Simulation results show a speedup of more than 5,000 times over HElib -- a popular software FHE library.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员