We revisit the classic problem of simplex range searching and related problems in computational geometry. We present a collection of new results which improve previous bounds by multiple logarithmic factors that were caused by the use of multi-level data structures. Highlights include the following: $\bullet$ For a set of $n$ points in a constant dimension $d$, we give data structures with $O(n^d)$ (or slightly better) space that can answer simplex range counting queries in optimal $O(\log n)$ time and simplex range reporting queries in optimal $O(\log n + k)$ time, where $k$ denotes the output size. For semigroup range searching, we obtain $O(\log n)$ query time with $O(n^d\mathop{\rm polylog}n)$ space. Previous data structures with similar space bounds by Matou\v{s}ek from nearly three decades ago had $O(\log^{d+1}n)$ or $O(\log^{d+1}n + k)$ query time. $\bullet$ For a set of $n$ simplices in a constant dimension $d$, we give data structures with $O(n)$ space that can answer stabbing counting queries (counting the number of simplices containing a query point) in $O(n^{1-1/d})$ time, and stabbing reporting queries in $O(n^{1-1/d}+k)$ time. Previous data structures had extra $\log^d n$ factors in space and query time. $\bullet$ For a set of $n$ (possibly intersecting) line segments in 2D, we give a data structure with $O(n)$ space that can answer ray shooting queries in $O(\sqrt{n})$ time. This improves Wang's recent data structure [SoCG'20] with $O(n\log n)$ space and $O(\sqrt{n}\log n)$ query time.
翻译:我们重新审视了简单值范围搜索的经典问题 。 我们展示了一组新结果, 这些结果通过使用多级别数据结构导致的多个对数系数改进了先前的界限。 亮点包括如下: $\ blllet$, 在一个不变维度为$dd$, 我们给一组数据结构提供 $( n) (或稍好) 空间, 能够以最理想的 $( log n) 时间和简单x 区域计数查询。 以最理想的 $( log n + k) 美元时间, 美元表示输出大小。 对于半组范围搜索, 我们得到了$( log n) 的查询时间, 美元( 或略好) 以近三年前的 美元( ========xxxxxxxxx) 来回答简单范围查询, 美元( ==xxxxxxxxxx) 时间结构, 以最近( =====xx 美元) 时间值 数字, 以我们设定了数据数 =xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 数据 。