We develop a new and powerful method to analyze time series to rigorously detect flares in the presence of an irregularly oscillatory baseline, and apply it to stellar light curves observed with TESS. First, we remove the underlying non-stochastic trend using a time-varying amplitude harmonic model. We then model the stochastic component of the light curves in a manner analogous to financial time series, as an ARMA+GARCH process, allowing us to detect and characterize impulsive flares as large deviations inconsistent with the correlation structure in the light curve. We apply the method to exemplar light curves from TIC13955147 (a G5V eruptive variable), TIC269797536 (an M4 high-proper motion star), and TIC441420236 (AU Mic, an active dMe flare star), detecting up to $145$, $460$, and $403$ flares respectively, at rates ranging from ${\approx}0.4$--$8.5$~day$^{-1}$ over different sectors and under different detection thresholds. We detect flares down to amplitudes of $0.03$%, $0.29$%, and $0.007$% of the bolometric luminosity for each star respectively. We model the distributions of flare energies and peak fluxes as power-laws, and find that the solar-like star exhibits values similar to that on the Sun ($α_{E,P}\approx1.85,2.36$), while for the less- and highly-active low-mass stars $α_{E,P}>2$ and $<2$ respectively.


翻译:我们开发了一种新颖且强大的时间序列分析方法,用于在存在不规则振荡基线的条件下严格检测耀斑,并将其应用于TESS观测的恒星光变曲线。首先,我们使用时变振幅谐波模型去除潜在的非随机趋势。随后,我们以类似于金融时间序列的方式,将光变曲线的随机分量建模为ARMA+GARCH过程,从而能够将脉冲式耀斑检测并表征为与光变曲线相关结构不一致的大幅偏离。我们将该方法应用于TIC13955147(一颗G5V型爆发变星)、TIC269797536(一颗M4型高自行恒星)和TIC441420236(AU Mic,一颗活跃的dMe型耀星)的示例光变曲线,在不同观测扇区及不同检测阈值下,分别检测到高达145、460和403次耀斑,耀斑发生率范围约为每天0.4至8.5次。对于每颗恒星,我们分别检测到振幅低至其热光度0.03%、0.29%和0.007%的耀斑。我们将耀斑能量和峰值通量的分布建模为幂律,发现类太阳恒星表现出与太阳相似的值(α_{E,P}≈1.85, 2.36),而对于低活动度和高活动度的低质量恒星,α_{E,P}分别大于2和小于2。

0
下载
关闭预览

相关内容

【ICML2025】时序分布漂移下的自适应估计与学习
专知会员服务
12+阅读 · 5月25日
专知会员服务
12+阅读 · 2021年6月20日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
【AAAI2023】用于图对比学习的谱特征增强
专知
20+阅读 · 2022年12月11日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员