Cyber threat and attack intelligence information are available in non-standard format from heterogeneous sources. Comprehending them and utilizing them for threat intelligence extraction requires engaging security experts. Knowledge graphs enable converting this unstructured information from heterogeneous sources into a structured representation of data and factual knowledge for several downstream tasks such as predicting missing information and future threat trends. Existing large-scale knowledge graphs mainly focus on general classes of entities and relationships between them. Open-source knowledge graphs for the security domain do not exist. To fill this gap, we've built \textsf{TINKER} - a knowledge graph for threat intelligence (\textbf{T}hreat \textbf{IN}telligence \textbf{K}nowl\textbf{E}dge g\textbf{R}aph). \textsf{TINKER} is generated using RDF triples describing entities and relations from tokenized unstructured natural language text from 83 threat reports published between 2006-2021. We built \textsf{TINKER} using classes and properties defined by open-source malware ontology and using hand-annotated RDF triples. We also discuss ongoing research and challenges faced while creating \textsf{TINKER}.


翻译:网络威胁和攻击情报信息以不同来源的非标准格式提供。 要使用这些网络威胁和攻击情报信息来进行威胁情报的提取, 就需要有安全专家的参与。 知识图表能够将这种来自不同来源的无结构信息转换成一系列下游任务的数据和事实知识的结构化代表, 例如预测缺失的信息和未来威胁趋势。 现有的大型知识图表主要侧重于实体的一般类别和它们之间的关系。 安全领域的开放源知识图表不存在。 为了填补这一空白, 我们从2006- 2021年间发表的83份威胁报告中建立了\ textsf{ TINKER} - 一个威胁情报知识图表(\ textbf{Textb{Textb{}INtlegligence\ textb{K}K}K}nowl\ textb{E}ge gtextb{R}ph。 现有的大规模知识图表将主要侧重于安全领域的实体和关系。 从象征性的非结构化自然语言文本中描述实体和关系。 我们用开放源的搜索工具来建立课程和争论我们所面临的挑战。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Github项目推荐 | 知识图谱文献集合
AI研习社
26+阅读 · 2019年4月12日
【荟萃】知识图谱论文与笔记
专知
71+阅读 · 2019年3月25日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
论文浅尝 |「知识表示学习」专题论文推荐
开放知识图谱
13+阅读 · 2018年2月12日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
相关资讯
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
17篇必看[知识图谱Knowledge Graphs] 论文@AAAI2020
学术报告|港科大助理教授宋阳秋博士
科技创新与创业
7+阅读 · 2019年7月19日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Github项目推荐 | 知识图谱文献集合
AI研习社
26+阅读 · 2019年4月12日
【荟萃】知识图谱论文与笔记
专知
71+阅读 · 2019年3月25日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
论文浅尝 |「知识表示学习」专题论文推荐
开放知识图谱
13+阅读 · 2018年2月12日
Top
微信扫码咨询专知VIP会员