The last decade has seen an upswing in interest and adoption of reinforcement learning (RL) techniques, in large part due to its demonstrated capabilities at performing certain tasks at "super-human levels". This has incentivized the community to prioritize research that demonstrates RL agent performance, often at the expense of research aimed at understanding their learning dynamics. Performance-focused research runs the risk of overfitting on academic benchmarks -- thereby rendering them less useful -- which can make it difficult to transfer proposed techniques to novel problems. Further, it implicitly diminishes work that does not push the performance-frontier, but aims at improving our understanding of these techniques. This paper argues two points: (i) RL research should stop focusing solely on demonstrating agent capabilities, and focus more on advancing the science and understanding of reinforcement learning; and (ii) we need to be more precise on how our benchmarks map to the underlying mathematical formalisms. We use the popular Arcade Learning Environment (ALE; Bellemare et al., 2013) as an example of a benchmark that, despite being increasingly considered "saturated", can be effectively used for developing this understanding, and facilitating the deployment of RL techniques in impactful real-world problems.


翻译:过去十年间,强化学习(RL)技术的研究兴趣与应用显著增长,这主要得益于其在某些任务上展现出的“超人类水平”能力。这一趋势促使学术界优先关注展示RL智能体性能的研究,而往往忽视了旨在理解其学习动态的研究。以性能为中心的研究存在对学术基准过度拟合的风险——从而削弱其实际效用——这可能导致所提出的技术难以迁移至新问题。此外,这种倾向无形中贬低了那些虽未推动性能边界、却致力于增进我们对该技术理解的研究工作。本文提出两个论点:(i)RL研究应停止仅聚焦于展示智能体能力,而更应关注推进强化学习的科学认知与理论理解;(ii)我们需要更精确地阐明基准测试如何映射到底层数学形式化框架。我们以流行的街机学习环境(ALE;Bellemare等人,2013)为例,说明尽管该基准日益被视为“饱和”,它仍能有效用于深化理论理解,并促进RL技术在有影响力的现实问题中的部署。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
Multi-Domain Multi-Task Rehearsal for Lifelong Learning
Arxiv
12+阅读 · 2020年12月14日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员