Quantum repeater networks play a crucial role in distributing entanglement. Various link architectures have been proposed to facilitate the creation of Bell pairs between distant nodes, with entangled photon sources emerging as a primary technology for building quantum networks. Our work advances the Memory-Source-Memory (MSM) link architecture, addressing the absence of practical implementation details. We conduct numerical simulations using the Quantum Internet Simulation Package (QuISP) to analyze the performance of the MSM link and contrast it with other link architectures. We observe a saturation effect in the MSM link, where additional quantum resources do not affect the Bell pair generation rate of the link. By introducing a theoretical model, we explain the origin of this effect and characterize the parameter region where it occurs. Our work bridges theoretical insights with practical implementation, which is crucial for robust and scalable quantum networks.
翻译:暂无翻译