We derive general, yet simple, sharp bounds on the size of the omitted variable bias for a broad class of causal parameters that can be identified as linear functionals of the conditional expectation function of the outcome. Such functionals encompass many of the traditional targets of investigation in causal inference studies, such as, for example, (weighted) average of potential outcomes, average treatment effects (including subgroup effects, such as the effect on the treated), (weighted) average derivatives, and policy effects from shifts in covariate distribution -- all for general, nonparametric causal models. Our construction relies on the Riesz-Frechet representation of the target functional. Specifically, we show how the bound on the bias depends only on the additional variation that the latent variables create both in the outcome and in the Riesz representer for the parameter of interest. Moreover, in many important cases (e.g, average treatment effects in partially linear models, or in nonseparable models with a binary treatment) the bound is shown to depend on two easily interpretable quantities: the nonparametric partial $R^2$ (Pearson's "correlation ratio") of the unobserved variables with the treatment and with the outcome. Therefore, simple plausibility judgments on the maximum explanatory power of omitted variables (in explaining treatment and outcome variation) are sufficient to place overall bounds on the size of the bias. Finally, leveraging debiased machine learning, we provide flexible and efficient statistical inference methods to estimate the components of the bounds that are identifiable from the observed distribution.
翻译:对于可被确定为目标功能的线性功能的广义因果参数类别,我们从省略的可变偏差的大小上得出一般、但简单、尖锐的界限。这些功能包括因果推断研究中许多传统的调查目标,例如潜在结果的(加权)平均值、平均处理效果(包括子集效应,例如对治疗结果的影响)、(加权)平均衍生物的影响,以及共变分布变化的政策影响 -- -- 全部都是一般的、非参数性因果模型。我们的构建依赖于目标功能的Riesz-Frechet表示。具体地说,我们显示对偏差的约束仅仅取决于潜在变量在结果和Riesz代表参数方面产生的额外变化。此外,在许多重要案例中(例如,部分线性模型或非可分解模型中的平均治疗效果,例如对半曲直的处理效果),其约束取决于两种易于解释的数量:观察到的非对准部分 $R%2 美元 (Pearson ) 的表示, 其“ 精确度部分的” 和最终结果的可变性分析结果, 和可理解性变量是不可分解的, 。