Semantic segmentation classifies each pixel in the image. Due to its advantages, semantic segmentation is used in many tasks, such as cancer detection, robot-assisted surgery, satellite image analysis, and self-driving cars. Accuracy and efficiency are the two crucial goals for this purpose, and several state-of-the-art neural networks exist. By employing different techniques, new solutions have been presented in each method to increase efficiency and accuracy and reduce costs. However, the diversity of the implemented approaches for semantic segmentation makes it difficult for researchers to achieve a comprehensive view of the field. In this paper, an abstraction model for semantic segmentation offers a comprehensive view of the field. The proposed framework consists of four general blocks that cover the operation of the majority of semantic segmentation methods. We also compare different approaches and analyze each of the four abstraction blocks' importance in each method's operation.
翻译:图像中的语义分解将每个像素分解分类。 由于其优点, 在许多任务中使用了语义分解, 如癌症检测、 机器人辅助手术、 卫星图像分析和自驾驶汽车。 准确性和效率是实现这一目标的两个关键目标, 并且存在一些最先进的神经网络。 通过使用不同技术, 每种方法都提出了新的解决方案来提高效率和准确性, 并降低成本。 但是, 所实施的语义分解方法的多样性使得研究人员难以对字段进行全面的观察。 在本文中, 语义分解的抽象模型提供了对域的全面观察。 拟议的框架由四个通用区块组成, 涵盖了大多数语义分解方法的运作。 我们还比较了不同的方法, 并分析了四个抽象区块在每种方法操作中的重要性。