We address uncertainty quantification for Gaussian processes (GPs) under misspecified priors, with an eye towards Bayesian Optimization (BO). GPs are widely used in BO because they easily enable exploration based on posterior uncertainty bands. However, this convenience comes at the cost of robustness: a typical function encountered in practice is unlikely to have been drawn from the data scientist's prior, in which case uncertainty estimates can be misleading, and the resulting exploration can be suboptimal. We present a frequentist approach to GP/BO uncertainty quantification. We utilize the GP framework as a working model, but do not assume correctness of the prior. We instead construct a confidence sequence (CS) for the unknown function using martingale techniques. There is a necessary cost to achieving robustness: if the prior was correct, posterior GP bands are narrower than our CS. Nevertheless, when the prior is wrong, our CS is statistically valid and empirically outperforms standard GP methods, in terms of both coverage and utility for BO. Additionally, we demonstrate that powered likelihoods provide robustness against model misspecification.
翻译:我们用错误的预言处理高斯工艺的不确定性量化问题,并着眼于巴伊西亚优化(BO) 。 高斯工艺在BO中被广泛使用,因为它们容易促成基于后游不确定带的勘探。 然而,这种便利是以稳健性为代价的:在实践中遇到的典型功能不可能从数据科学家以前的经验中得出,在这种情况下,不确定性估计可能会误导,由此产生的探索可能不尽人意。 我们对GP/BO不确定性量化提出了一种经常采用的方法。我们利用GP框架作为工作模式,但并不接受先前的正确性。我们用马丁格尔技术为未知功能建立一个信任序列(CS),但实现稳健性需要付出一定的代价:如果前者是正确的,那么,远古GP频带比我们的CS要窄。 但是,如果前者是错误的,那么我们的CS在统计上是有效的,而且从经验上比标准GP方法差,在覆盖面和对BO的实用性方面都是。 此外,我们证明,强的概率提供了抵御模型的准确性。