Third-state dynamics (Angluin et al. 2008; Perron et al. 2009) is a well-known process for quickly and robustly computing approximate majority through interactions between randomly-chosen pairs of agents. In this paper, we consider this process in a new model with persistent-state catalytic inputs, as well as in the presence of transient leak faults. Based on models considered in recent protocols for populations with persistent-state agents (Dudek et al. 2017; Alistarh et al. 2017; Alistarh et al. 2020), we formalize a Catalytic Input (CI) model comprising $n$ input agents and $m$ worker agents. For $m = \Theta(n)$, we show that computing the parity of the input population with high probability requires at least $\Omega(n^2)$ total interactions, demonstrating a strong separation between the CI and standard population protocol models. On the other hand, we show that the third-state dynamics can be naturally adapted to this new model to solve approximate majority in $O(n \log n)$ total steps with high probability when the input margin is $\Omega(\sqrt{n \log n})$, which preserves the time and space efficiency of the corresponding protocol in the original model. We then show the robustness of third-state dynamics protocols to the transient leak faults considered by (Alistarh et al. 2017; Alistarh et al. 2020). In both the original and CI models, these protocols successfully compute approximate majority with high probability in the presence of leaks occurring at each time step with probability $\beta \leq O\left(\sqrt{n \log n}/n\right)$. The resilience of these dynamics to adversarial leaks exhibits a subtle connection to previous results involving Byzantine agents.


翻译:第三州动态(Angluin等人,2008年;Perron等人,2009年)是一个众所周知的过程,通过随机选择的代理商之间的交互作用,快速和有力地计算大约多数。在本文件中,我们以具有持久性催化投入的新模式以及存在瞬时泄漏缺陷的方式,来考虑这一过程。根据最近为具有持久性代理商的人口制定的协议中考虑的模式(Dudek等人,2017年;Alistarh等人,2017年;Alistarh等人,2020年),我们正式确定一个由美元输入剂和美元工人代理商组成的催化投入(CI)模型。对于美元=\Teta(n),我们表明计算输入量的等值总等值至少需要$\Omq(n%2)美元的总互动。另一方面,我们显示,第三州的动态动态可以自然调整到这个新模式,以美元(n\log n)计算总概率,当输入量比值的正值值为美元时,这些正值的正值的正值正值正值正值正值正值正值正值正值正值正值正值正值正值正值。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机视觉最佳实践、代码示例和相关文档
专知会员服务
18+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年4月12日
Arxiv
0+阅读 · 2020年11月24日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
3+阅读 · 2019年4月12日
Top
微信扫码咨询专知VIP会员