The Graded of Membership (GoM) model is a powerful tool for inferring latent classes in categorical data, which enables subjects to belong to multiple latent classes. However, its application is limited to categorical data with nonnegative integer responses, making it inappropriate for datasets with continuous or negative responses. To address this limitation, this paper proposes a novel model named the Weighted Grade of Membership (WGoM) model. Compared with GoM, our WGoM relaxes GoM's distribution constraint on the generation of a response matrix and it is more general than GoM. We then propose an algorithm to estimate the latent mixed memberships and the other WGoM parameters. We derive the error bounds of the estimated parameters and show that the algorithm is statistically consistent. The algorithmic performance is validated in both synthetic and real-world datasets. The results demonstrate that our algorithm is accurate and efficient, indicating its high potential for practical applications. This paper makes a valuable contribution to the literature by introducing a novel model that extends the applicability of the GoM model and provides a more flexible framework for analyzing categorical data with weighted responses.
翻译:暂无翻译