The widespread adoption of advanced video codecs such as AV1 is often hindered by their high decoding complexity, posing a challenge for battery-constrained devices. While encoders can be configured to produce bitstreams that are decoder-friendly, estimating the decoding complexity and energy overhead for a given video is non-trivial. In this study, we systematically analyse the impact of disabling various coding tools and adjusting coding parameters in two AV1 encoders, libaom-av1 and SVT-AV1. Using system-level energy measurement tools like RAPL (Running Average Power Limit), Intel SoC Watch (integrated with VTune profiler), we quantify the resulting trade-offs between decoding complexity, energy consumption, and compression efficiency for decoding a bitstream. Our results demonstrate that specific encoder configurations can substantially reduce decoding complexity with minimal perceptual quality degradation. For libaom-av1, disabling CDEF, an in-loop filter gives us a mean reduction in decoding cycles by 10%. For SVT-AV1, using the in-built, fast-decode=2 preset achieves a more substantial 24% reduction in decoding cycles. These findings provide strategies for content providers to lower the energy footprint of AV1 video streaming.


翻译:先进视频编解码器(如AV1)的广泛应用常因其高解码复杂度而受阻,这对电池受限设备构成挑战。虽然编码器可通过配置生成对解码器友好的码流,但准确估计给定视频的解码复杂度与能耗开销并非易事。本研究系统分析了在两种AV1编码器(libaom-av1与SVT-AV1)中禁用各类编码工具及调整编码参数的影响。通过使用RAPL(运行平均功率限制)、Intel SoC Watch(集成于VTune性能分析器)等系统级能耗测量工具,我们量化了码流解码过程中解码复杂度、能耗与压缩效率之间的权衡关系。实验结果表明,特定编码器配置能在感知质量损失最小的前提下显著降低解码复杂度。对于libaom-av1,禁用环路滤波器CDEF可使解码周期平均减少10%;对于SVT-AV1,采用内置的fast-decode=2预设方案可实现更显著的24%解码周期降幅。这些发现为内容提供商降低AV1视频流传输的能耗足迹提供了有效策略。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员