We study the dependent type theory CaTT, introduced by Finster and Mimram, which presents the theory of weak $\omega$-categories, following the idea that type theories can be considered as presentations of generalized algebraic theories. Our main contribution is a formal proof that the models of this type theory correspond precisely to weak $\omega$-categories, as defined by Maltsiniotis, by generalizing a definition proposed by Grothendieck for weak $\omega$-groupoids: Those are defined as suitable presheaves over a cat-coherator, which is a category encoding structure expected to be found in an $\omega$-category. This comparison is established by proving the initiality conjecture for the type theory CaTT, in a way which suggests the possible generalization to a nerve theorem for a certain class of dependent type theories


翻译:我们研究Finster和Mimram提出的依赖型理论CATT, 由Finster和Mimram提出,该理论提出了疲软的美元类的理论,其依据是,类型理论可被视为通用代数理论的表述。我们的主要贡献是正式证明,这种类型理论的模型与Maltsiniotis定义的薄弱的美元类非常吻合,其方法是将Grothendieeck提出的弱弱软的美元类的定义笼统化:这些理论被定义为适合猫类校对器的预示物,而猫类校准器是预期在美元类中的分类编码结构。这种比较是通过证明CATT理论类型理论的初始性预测来建立的,其方式可以表明某类依赖型理论的神经学理论有可能被概括化为神经论。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
122+阅读 · 2019年12月9日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
已删除
将门创投
3+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月30日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
专知会员服务
41+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
122+阅读 · 2019年12月9日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
3+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员