This paper provides elementary analyses of the regret and generalization of minimum-norm interpolating classifiers (MNIC). The MNIC is the function of smallest Reproducing Kernel Hilbert Space norm that perfectly interpolates a label pattern on a finite data set. We derive a mistake bound for MNIC and a regularized variant that holds for all data sets. This bound follows from elementary properties of matrix inverses. Under the assumption that the data is independently and identically distributed, the mistake bound implies that MNIC generalizes at a rate proportional to the norm of the interpolating solution and inversely proportional to the number of data points. This rate matches similar rates derived for margin classifiers and perceptrons. We derive several plausible generative models where the norm of the interpolating classifier is bounded or grows at a rate sublinear in $n$. We also show that as long as the population class conditional distributions are sufficiently separable in total variation, then MNIC generalizes with a fast rate.
翻译:本文对最低中上层内插分类(MNIC)的遗憾和概括性进行基本分析。MNIC是最小的Recing Kernel Hilbert Space 规范的功能,它完美地将一个标签模式套入一个有限数据集。我们为NIC得出一个错误,而一个常规变体则持有所有数据集。这个结合来自矩阵反向的基本特性。根据数据独立和分布相同的假设,错误约束意味着NIC以与内插解决方案规范成比例的速率概括,与数据点数成反比例。这个比率与边层和边端的类似速率相匹配。我们得出了若干可信的基因模型,在这种模型中,内插分类器的规范受约束,或以美元以子线速增长。我们还表明,只要人口等级的有条件分布在总变异性中足够分解,那么MNIC则以快速速速率概括。