We study the consistency of minimum-norm interpolation in reproducing kernel Hilbert spaces corresponding to bounded kernels. Our main result give lower bounds for the generalization error of the kernel interpolation measured in a continuous scale of norms that interpolate between $L^2$ and the hypothesis space. These lower bounds imply that kernel interpolation is always inconsistent, when the smoothness index of the norm is larger than a constant that depends only on the embedding index of the hypothesis space and the decay rate of the eigenvalues.
翻译:我们研究了有界核对应的再生核希尔伯特空间中最小范数插值的一致性。我们的主要结果给出了核插值在$L^2$范数与假设空间之间连续尺度范数下度量的泛化误差下界。这些下界表明,当范数的光滑性指数大于仅取决于假设空间的嵌入指数与特征值衰减率的常数时,核插值总是不一致的。